mibiscreen.visualize
API reference
mibiscreen module for data visualization.
activity
Activity plot.
@author: alraune
activity(data, save_fig=False, **kwargs)
Function creating activity plot.
Activity plot showing scatter of total number of metabolites vs total concentration of contaminant per well with color coding of NA traffic lights: red/yellow/green corresponding to no natural attenuation going on (red), limited/unknown NA activity (yellow) or active natural attenuation (green)
Input
data: list or pandas.DataFrame
quantities required in plot:
- total concentration of contaminants per sample
- total count of metabolites per sample
- traffic light on NA activity per sample
if DataFrame, it contains the three required quantities with their standard names
if list of arrays: the three quantities are given order above
if list of pandas-Series, quantities given in standard names
save_fig: Boolean or string, optional, default is False.
Flag to save figure to file with name provided as string. =
**kwargs: dict
dictionary with plot settings
Output
fig : Figure object
Figure object of created activity plot.
ax : Axes object
Axes object of created activity plot.
Source code in mibiscreen/visualize/activity.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
|
ordination_plot
Ordination plot.
@author: Alraune Zech
ordination_plot(ordination_output, plot_loadings=True, plot_scores=True, rescale_loadings_scores=False, adjust_text=True, scale_focus='loadings', axis_ranges=False, save_fig=False, **kwargs)
Function creating ordination plot.
Based on ordination analysis providing ordination loadings and scores.
Input
ordination_output : Dictionary
contains ordination results:
- as numpy arrays; ordination loading and scores
- names of the samples and the Environmental and Species variables
- method : String (pca, cca, rda) The ordination method used in the analysis.
plot_loadings : Boolean; default is True
flag to plot the ordination loadings
plot_scores : Boolean; default is True
flag to plot the ordiantion scores
rescale_loadings_scores : Boolean; default is False
flag to rescale loadings and scores to have a loading close to 1
adjust_text : Boolean, default is True
flag to perform automized adjustment of text labes of loadings and scores to avoid overlap
scale_focus : String, default is "loadings"
flag to specify if scaling focusses on either 'loadings' or 'scores' or 'none'.
axis_ranges : Boolean or list/array of 4 values, default is False,
if array or list it gives fixed x and y axis dimensions [x_min, x_maxm y_min, y_max]
save_fig: Boolean or string, optional, default is False.
Flag to save figure to file with name provided as string.
**kwargs: dict
dictionary with plot settings (e.g. fonts, arrow specifics, etc)
Output
fig : Figure object
Figure object of created activity plot.
ax : Axes object
Axes object of created activity plot.
Source code in mibiscreen/visualize/ordination_plot.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
stable_isotope_plots
Linear regression plots for stable isotope analysis in mibiscreen.
@author: Alraune Zech
Keeling_plot(concentration, delta, coefficients, relative_abundance=None, save_fig=False, **kwargs)
Creating a Keeling plot.
A Keeling plot is an approach to identify the isotopic composition of a contaminating source from measured concentrations and isotopic composition (delta) of a target species in the mix of the source and a pool. It is based on the linear relationship of the concentration and the delta-value which are measured over time or across a spatial interval.
The plot shows the inverse concentration data against the delta-values along the linear regression line. For gaining the regression coefficients perform a linear fitting or run
Keeling_regression() [in the module analysis]
The parameter of interest, the delta (or relative_abundance, respectively) of the source quantity is the intercept of linear fit with the y-axis, or in other words, the absolute value of the linear fit function.
Input
c_mix : np.array, pd.dataframe
total molecular mass/molar concentration of target substance
at different locations (at a time) or at different times (at one location)
delta_mix : np.array, pd.dataframe (same length as c_mix)
relative isotope ratio (delta-value) of target substance
relative_abundance : None or np.array, pd.dataframe (same length as c_mix), default None
if not None it replaces delta_mix in the inverse estimation and plotting
relative abundance of target substance
coefficients : tuple of lenght 2
containing coefficients of the linear fit
save_fig: Boolean or string, optional, default is False.
Flag to save figure to file with name provided as string. =
**kwargs: dict
dictionary with plot settings
fig : Figure object
Figure object of created activity plot.
ax : Axes object
Axes object of created activity plot.
Source code in mibiscreen/visualize/stable_isotope_plots.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
|
Lambda_plot(delta_C, delta_H, coefficients, save_fig=False, **kwargs)
Creating a Lambda plot.
A Lambda plot shows the δ13C versus δ2H signatures of a chemical compound. Relative changes in the carbon and hydrogen isotope ratios can indicate the occurrence of specific enzymatic degradation reactions. The relative changes are indicated by the lambda-H/C value which is the slope of the linear regression of hydrogen versus carbon isotope signatures. For gaining the regression coefficients perform a linear fitting or run
Lambda_regression() [in the module analysis]
Lambda-values linking to specific enzymatic reactions
To be added!
Details provided in Vogt et al. [2016, 2020].
References
C. Vogt, C. Dorer, F. Musat, and H. H. Richnow. Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons - from enzymes to the environment. Current Opinion in Biotechnology, 41:90–98, 2016. C. Vogt, F. Musat, and H.-H. Richnow. Compound-Specific Isotope Analysis for Studying the Biological Degradation of Hydrocarbons. In Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, pages 285-321. Springer Nature Switzerland, 2020.
A. Fischer, I. Herklotz, S. Herrmann, M. Thullner, S. A. Weelink, A. J. Stams, M. Schl ̈omann, H.-H. Richnow, and C. Vogt. Combined Carbon and Hydrogen Isotope Fractionation Investigations for Elucidating Benzene Biodegradation Pathways. Environmental Science and Technology, 42:4356–4363, 2008.
S. Kuemmel, F.-A. Herbst, A. Bahr, M. Arcia Duarte, D. H. Pieper, N. Jehmlich, J. Seifert, M. Von Bergen, P. Bombach, H. H. Richnow, and C. Vogt. Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiology Ecology, 91(3), 2015.
Input
delta_C : np.array, pd.series
relative isotope ratio (delta-value) of carbon of target molecule
delta_H : np.array, pd.series (same length as delta_C)
relative isotope ratio (delta-value) of hydrogen of target molecule
coefficients : tuple of lenght 2
containing coefficients of the linear fit
save_fig: Boolean or string, optional, default is False.
Flag to save figure to file with name provided as string.
**kwargs: dict
dictionary with plot settings
fig : Figure object
Figure object of created activity plot.
ax : Axes object
Axes object of created activity plot.
Source code in mibiscreen/visualize/stable_isotope_plots.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
Rayleigh_fractionation_plot(concentration, delta, coefficients, save_fig=False, **kwargs)
Creating a Rayleigh fractionation plot.
Rayleigh fractionation is a common application to characterize the removal of a substance from a finite pool using stable isotopes. It is based on the change in the isotopic composition of the pool due to different kinetics of the change in lighter and heavier isotopes.
We follow the most simple approach assuming that the substance removal follows first-order kinetics, where the rate coefficients for the lighter and heavier isotopes of the substance differ due to kinetic isotope fractionation effects. The isotopic composition of the remaining substance in the pool will change over time, leading to the so-called Rayleigh fractionation.
The plot shows the log-transformed concentration data against the delta-values along the linear regression line. For gaining the regression coefficients perform a linear fitting or run
Rayleigh_fractionation() [in the module analysis]
The parameter of interest, the kinetic fractionation factor (epsilon or alpha -1) of the removal process is the slope of the the linear trend line.
Input
concentration : np.array, pd.series
total molecular mass/molar concentration of target substance
at different locations (at a time) or at different times (at one location)
delta : np.array, pd.series (same length as concentration)
relative isotope ratio (delta-value) of target substance
coefficients : tuple of lenght 2
containing coefficients of the linear fit
save_fig: Boolean or string, optional, default is False.
Flag to save figure to file with name provided as string. =
**kwargs: dict
dictionary with plot settings
fig : Figure object
Figure object of created activity plot.
ax : Axes object
Axes object of created activity plot.
Source code in mibiscreen/visualize/stable_isotope_plots.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|